R/refresh_covid19mobility_google.R
refresh_covid19mobility_google_us_counties.Rd
From Google: "Each Community Mobility Report dataset is presented by location and highlights the percent change in visits to places like grocery stores and parks within a geographic area.
Location accuracy and the understanding of categorized places varies from region to region, so we don’t recommend using this data to compare changes between countries, or between regions with different characteristics (e.g. rural versus urban areas).
Changes for each day are compared to a baseline value for that day of the week: The baseline is the median value, for the corresponding day of the week, during the 5-week period Jan 3–Feb 6, 2020. The datasets show trends over several months with the most recent data representing approximately 2-3 days ago—this is how long it takes to produce the datasets."
Data represents changes from baseline visits for the following types of locations visited:
retail and recreation
grocery and pharmacy
parks
transit stations
workplaces
residential
refresh_covid19mobility_google_us_counties()
A tibble meeting the Covid19R Project data standard. Columns include:
date - The date in YYYY-MM-DD form
location - The name of the location as provided by the data source.
location_type - The type of location using the covid19R controlled vocabulary.
location_code - A standardized location code using a national or international standard. In this case, FIPS state or county codes. See https://en.wikipedia.org/wiki/Federal_Information_Processing_Standard_state_code and https://en.wikipedia.org/wiki/FIPS_county_code for more
location_code_type The type of standardized location code being used according to the covid19R controlled vocabulary. Here we use iso_3166_2
data_type - the type of data in that given row. See description.
value - number of cases of each data type
Google Covid-19 Mobility Reports https://www.google.com/covid19/mobility/
The Covid19R Project https://covid19r.github.io/documentation/
# \donttest{ covid19mobility_google_us_counties <- refresh_covid19mobility_google_us_counties()#> | | | 0% | |====== | 8% | |============ | 17% | |============= | 19% | |=================== | 27% | |======================== | 34% | |============================== | 42% | |==================================== | 51% | |======================================= | 55% | |============================================= | 64% | |================================================ | 68% | |====================================================== | 77% | |============================================================ | 85% | |=============================================================== | 89% | |===================================================================== | 98% | |======================================================================| 100% #> | | | 0% | |= | 2% | |=== | 4% | |==== | 6% | |===== | 7% | |====== | 9% | |======== | 11% | |======== | 12% | |========== | 14% | |========== | 15% | |============ | 17% | |============= | 19% | |============== | 20% | |=============== | 21% | |================ | 22% | |================= | 24% | |================== | 26% | |=================== | 27% | |==================== | 29% | |===================== | 30% | |====================== | 32% | |======================== | 34% | |======================== | 35% | |========================== | 37% | |========================== | 38% | |============================ | 39% | |============================= | 41% | |============================== | 42% | |=============================== | 44% | |================================ | 45% | |================================= | 47% | |================================== | 49% | |=================================== | 50% | |==================================== | 52% | |===================================== | 53% | |====================================== | 54% | |======================================= | 56% | |======================================== | 57% | |========================================= | 59% | |========================================== | 60% | |=========================================== | 62% | |============================================= | 64% | |============================================= | 65% | |=============================================== | 67% | |=============================================== | 68% | |================================================= | 70% | |================================================== | 71% | |=================================================== | 72% | |==================================================== | 74% | |===================================================== | 75% | |====================================================== | 77% | |======================================================= | 79% | |======================================================== | 80% | |========================================================= | 82% | |========================================================== | 83% | |=========================================================== | 85% | |============================================================= | 87% | |============================================================= | 88% | |=============================================================== | 89% | |=============================================================== | 90% | |================================================================= | 92% | |================================================================== | 94% | |=================================================================== | 95% | |==================================================================== | 97% | |===================================================================== | 98% | |======================================================================| 100%head(covid19mobility_google_us_counties)#> # A tibble: 6 x 8 #> date location location_type location_code location_code_t… state #> <date> <chr> <chr> <chr> <chr> <chr> #> 1 2020-02-15 Autauga… county 01001 fips_code Alab… #> 2 2020-02-15 Autauga… county 01001 fips_code Alab… #> 3 2020-02-15 Autauga… county 01001 fips_code Alab… #> 4 2020-02-15 Autauga… county 01001 fips_code Alab… #> 5 2020-02-15 Autauga… county 01001 fips_code Alab… #> 6 2020-02-15 Autauga… county 01001 fips_code Alab… #> # … with 2 more variables: data_type <chr>, value <int># }