The covid19italy R package provides a tidy format dataset of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) pandemic outbreak in Italy. The package includes the following three datasets:

  • italy_total - daily summary of the outbreak on the national level
  • italy_region - daily summary of the outbreak on the region level
  • italy_province - daily summary of the outbreak on the province level

The data was pull from Italy Department of Civil Protection

Installation

You can install the released version of covid19italy from CRAN with:

install.packages("covid19italy")

Or, install the most recent version from GitHub with:

# install.packages("devtools")
devtools::install_github("RamiKrispin/covid19Italy")

Data refresh

The covid19italy package dev version is been updated on a daily bases. The update_data function enables a simple refresh of the installed package datasets with the most updated version on Github:

library(covid19italy)

update_data()

Note: must restart the R session to have the updates available

Italy summary

The italy_total dataset provides an overall summary of the cases in Italy since the beginning of the covid19 outbreak since February 24, 2020. The dataset contains the following fields:

  • date - timestamp, a Date object
  • hospitalized_with_symptoms - daily number of patients hospitalized with symptoms
  • intensive_care - daily number of patients on intensive care
  • total_hospitalized - daily total number of patients hospitalized (hospitalized_with_symptoms + intensive_care)
  • home_confinement - daily number of people under home confinement
  • cumulative_positive_cases - a daily snapshot of the number of positive cases
  • daily_positive_cases - daily new positive cases
  • daily_cases - daily new positive, recovered, and death cases
  • recovered - total number of recovered cases (cumulative)
  • death - total number of death cases (cumulative)
  • cumulative_cases - total number of positive cases (cumulative)
  • total_tests - total number of tests performed (cumulative)
library(covid19italy)

data(italy_total)

str(italy_total)
#> 'data.frame':    62 obs. of  12 variables:
#>  $ date                      : Date, format: "2020-02-24" "2020-02-25" ...
#>  $ hospitalized_with_symptoms: int  101 114 128 248 345 401 639 742 1034 1346 ...
#>  $ intensive_care            : int  26 35 36 56 64 105 140 166 229 295 ...
#>  $ total_hospitalized        : int  127 150 164 304 409 506 779 908 1263 1641 ...
#>  $ home_confinement          : int  94 162 221 284 412 543 798 927 1000 1065 ...
#>  $ cumulative_positive_cases : int  221 311 385 588 821 1049 1577 1835 2263 2706 ...
#>  $ daily_positive_cases      : int  0 90 74 203 233 228 528 258 428 443 ...
#>  $ recovered                 : int  1 1 3 45 46 50 83 149 160 276 ...
#>  $ death                     : int  7 10 12 17 21 29 34 52 79 107 ...
#>  $ cumulative_cases          : int  229 322 400 650 888 1128 1694 2036 2502 3089 ...
#>  $ total_tests               : int  4324 8623 9587 12014 15695 18661 21127 23345 25856 29837 ...
#>  $ total_people_tested       : int  NA NA NA NA NA NA NA NA NA NA ...

head(italy_total)
#>         date hospitalized_with_symptoms intensive_care total_hospitalized
#> 1 2020-02-24                        101             26                127
#> 2 2020-02-25                        114             35                150
#> 3 2020-02-26                        128             36                164
#> 4 2020-02-27                        248             56                304
#> 5 2020-02-28                        345             64                409
#> 6 2020-02-29                        401            105                506
#>   home_confinement cumulative_positive_cases daily_positive_cases recovered
#> 1               94                       221                    0         1
#> 2              162                       311                   90         1
#> 3              221                       385                   74         3
#> 4              284                       588                  203        45
#> 5              412                       821                  233        46
#> 6              543                      1049                  228        50
#>   death cumulative_cases total_tests total_people_tested
#> 1     7              229        4324                  NA
#> 2    10              322        8623                  NA
#> 3    12              400        9587                  NA
#> 4    17              650       12014                  NA
#> 5    21              888       15695                  NA
#> 6    29             1128       18661                  NA

Italy region level

The italy_region dataset provides an overall summary of the cases in Italy’s regions. The dataset contains the following fields:

  • date - timestamp, a Date object
  • region_code - the region code
  • region_name - the region name
  • lat - region latitude coordinate
  • long - region longitude coordinate
  • hospitalized_with_symptoms - daily number of patients hospitalized with symptoms
  • intensive_care - daily number of patients on intensive care
  • total_hospitalized - daily total number of patients hospitalized (hospitalized_with_symptoms + intensive_care)
  • home_confinement - daily number of people under home confinement
  • cumulative_positive_cases - a daily snapshot of the number of positive cases
  • daily_positive_cases - daily new positive cases
  • daily_cases - daily new positive, recovered, and death cases
  • recovered - total number of recovered cases (cumulative)
  • death - total number of death cases (cumulative)
  • cumulative_cases - total number of positive cases, recovered, and death (cumulative)
  • total_tests - total number of tests performed (cumulative)
  • region_spatial - the spatial region names as in the output of the ne_states function from the rnaturalearth package
data(italy_region)

str(italy_region)
#> 'data.frame':    1302 obs. of  17 variables:
#>  $ date                      : Date, format: "2020-02-24" "2020-02-24" ...
#>  $ region_code               : int  13 17 4 18 15 8 6 12 7 3 ...
#>  $ region_name               : chr  "Abruzzo" "Basilicata" "P.A. Bolzano" "Calabria" ...
#>  $ lat                       : num  42.4 40.6 46.5 38.9 40.8 ...
#>  $ long                      : num  13.4 15.8 11.4 16.6 14.3 ...
#>  $ hospitalized_with_symptoms: int  0 0 0 0 0 10 0 1 0 76 ...
#>  $ intensive_care            : int  0 0 0 0 0 2 0 1 0 19 ...
#>  $ total_hospitalized        : int  0 0 0 0 0 12 0 2 0 95 ...
#>  $ home_confinement          : int  0 0 0 0 0 6 0 0 0 71 ...
#>  $ cumulative_positive_cases : int  0 0 0 0 0 18 0 2 0 166 ...
#>  $ daily_positive_cases      : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ recovered                 : int  0 0 0 0 0 0 0 1 0 0 ...
#>  $ death                     : int  0 0 0 0 0 0 0 0 0 6 ...
#>  $ cumulative_cases          : int  0 0 0 0 0 18 0 3 0 172 ...
#>  $ total_tests               : int  5 0 1 1 10 148 58 124 1 1463 ...
#>  $ total_people_tested       : int  NA NA NA NA NA NA NA NA NA NA ...
#>  $ region_spatial            : chr  "Abruzzo" "Basilicata" "Trentino-Alto Adige" "Calabria" ...

head(italy_region)
#>         date region_code    region_name      lat     long
#> 1 2020-02-24          13        Abruzzo 42.35122 13.39844
#> 2 2020-02-24          17     Basilicata 40.63947 15.80515
#> 3 2020-02-24           4   P.A. Bolzano 46.49933 11.35662
#> 4 2020-02-24          18       Calabria 38.90598 16.59440
#> 5 2020-02-24          15       Campania 40.83957 14.25085
#> 6 2020-02-24           8 Emilia-Romagna 44.49437 11.34172
#>   hospitalized_with_symptoms intensive_care total_hospitalized home_confinement
#> 1                          0              0                  0                0
#> 2                          0              0                  0                0
#> 3                          0              0                  0                0
#> 4                          0              0                  0                0
#> 5                          0              0                  0                0
#> 6                         10              2                 12                6
#>   cumulative_positive_cases daily_positive_cases recovered death
#> 1                         0                    0         0     0
#> 2                         0                    0         0     0
#> 3                         0                    0         0     0
#> 4                         0                    0         0     0
#> 5                         0                    0         0     0
#> 6                        18                    0         0     0
#>   cumulative_cases total_tests total_people_tested      region_spatial
#> 1                0           5                  NA             Abruzzo
#> 2                0           0                  NA          Basilicata
#> 3                0           1                  NA Trentino-Alto Adige
#> 4                0           1                  NA            Calabria
#> 5                0          10                  NA            Campania
#> 6               18         148                  NA      Emilia-Romagna

Italy province level

The italy_region dataset provides an overall summary of the cases in Italy’s regions. The dataset contains the following fields:

  • date - timestamp, a Date object
  • region_code - the region code
  • region_name - the region name
  • province_code - the province code
  • province_name - the province name
  • province_abb - the province abbreviation
  • lat - province latitude coordinate
  • long - province longitude coordinate
  • total_cases - total number of positive cases (cumulative)
  • new_tests - daily number of positive cases
  • province_spatial - the spatial province names as in the output of the ne_states function from the rnaturalearth package
data(italy_province)

str(italy_province)
#> 'data.frame':    7936 obs. of  11 variables:
#>  $ date            : Date, format: "2020-02-24" "2020-02-24" ...
#>  $ region_code     : int  13 13 13 13 13 17 17 17 4 4 ...
#>  $ region_name     : chr  "Abruzzo" "Abruzzo" "Abruzzo" "Abruzzo" ...
#>  $ province_code   : int  69 66 68 67 979 77 76 980 21 981 ...
#>  $ province_name   : chr  "Chieti" "L'Aquila" "Pescara" "Teramo" ...
#>  $ province_abb    : chr  "CH" "AQ" "PE" "TE" ...
#>  $ lat             : num  42.4 42.4 42.5 42.7 0 ...
#>  $ long            : num  14.2 13.4 14.2 13.7 0 ...
#>  $ total_cases     : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ new_cases       : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ province_spatial: chr  "Chieti" "L'Aquila" "Pescara" "Teramo" ...

head(italy_province)
#>         date region_code region_name province_code
#> 1 2020-02-24          13     Abruzzo            69
#> 2 2020-02-24          13     Abruzzo            66
#> 3 2020-02-24          13     Abruzzo            68
#> 4 2020-02-24          13     Abruzzo            67
#> 5 2020-02-24          13     Abruzzo           979
#> 6 2020-02-24          17  Basilicata            77
#>                          province_name province_abb      lat     long
#> 1                               Chieti           CH 42.35103 14.16755
#> 2                             L'Aquila           AQ 42.35122 13.39844
#> 3                              Pescara           PE 42.46458 14.21365
#> 4                               Teramo           TE 42.65892 13.70440
#> 5 In fase di definizione/aggiornamento               0.00000  0.00000
#> 6                               Matera           MT 40.66751 16.59792
#>   total_cases new_cases                     province_spatial
#> 1           0         0                               Chieti
#> 2           0         0                             L'Aquila
#> 3           0         0                              Pescara
#> 4           0         0                               Teramo
#> 5           0         0 In fase di definizione/aggiornamento
#> 6           0         0                               Matera