daily summary of the Coronavirus (COVID-19) cases by state/province.

coronavirus

Format

A data.frame object

Source

Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus website

Details

The dataset contains the daily summary of Coronavirus cases (confirmed, death, and recovered), by state/province

Examples

data(coronavirus) require(dplyr)
#> Loading required package: dplyr
#> #> Attaching package: ‘dplyr’
#> The following object is masked from ‘package:testthat’: #> #> matches
#> The following objects are masked from ‘package:stats’: #> #> filter, lag
#> The following objects are masked from ‘package:base’: #> #> intersect, setdiff, setequal, union
# Get top confirmed cases by state coronavirus %>% filter(type == "confirmed") %>% group_by(Country.Region) %>% summarise(total = sum(cases)) %>% arrange(-total) %>% head(20)
#> # A tibble: 20 x 2 #> Country.Region total #> <chr> <int> #> 1 US 580619 #> 2 Spain 170099 #> 3 Italy 159516 #> 4 France 137875 #> 5 Germany 130072 #> 6 United Kingdom 89570 #> 7 China 83213 #> 8 Iran 73303 #> 9 Turkey 61049 #> 10 Belgium 30589 #> 11 Netherlands 26710 #> 12 Switzerland 25688 #> 13 Canada 25679 #> 14 Brazil 23430 #> 15 Russia 18328 #> 16 Portugal 16934 #> 17 Austria 14041 #> 18 Israel 11586 #> 19 Sweden 10948 #> 20 Ireland 10647
# Get the number of recovered cases in Mainland China by province coronavirus %>% filter(type == "recovered", Country.Region == "Mainland China") %>% group_by(Province.State) %>% summarise(total = sum(cases)) %>% arrange(-total)
#> # A tibble: 0 x 2 #> # … with 2 variables: Province.State <chr>, total <int>